Heated External Insulation Composite Systems to avoid Biological Defacement

9th Nordic Symposium on Building Physics
Tampere, Finland
29th May to 2nd June 2011

Faculty of Engineering
Dipl.-Ing. (FH)
Julia von Werder
E-Mail: julia.von_werder@hs-wismar.de
www.hs-wismar.de
Outline

- Background
- Research Design
 - Free weathering test of electrically heated samples
 - Concept for a regenerative heating system
 - Set-up of a test façade
- Results
- Conclusions
Background – Building Physics

Thin rendering layer of ETICS
• thermally decoupled by insulation material
• small heat capacity
 → high disposition to undercooling
 → low drying capacity

System set-up leads to
 → long lasting humidity films
 → algal growth

Partially insulated house in the historic city of Stralsund
Background – Building Physics

Layer	Thickness [m]
External rendering (2 layers) | 0.015
EPS | 0 – 0.2
Brickwork | 0.36
Internal rendering | 0.01

Maximum reduction of heat flux in %: 85
Maximum increase of undercooling-duration in %: 1100
Strategies to prevent algal growth

- **Thermal strategy:**
 - Phase Change Materials
 - low emitting paints
 - *sensor controlled heating*

- **Hygric strategy:**
 - plaster systems controlling the humidity profil
 - microstructured surfaces (copying the Lotus-leaf)

- **Chemical strategy**
 - photocatalysis
 - biocides

 → only reliable protection so far
 → water solubility leads to
 - limited action and
 - contamination of water bodies
 - Periodic maintenance consumes money and energy!
Heated External Insulation Composite Systems to avoid Biological Defacement
Dipl.-Ing. (FH) Julia v. Werder

Research Design - Free weathering test

<table>
<thead>
<tr>
<th>absorbing (hydrophilic system)</th>
<th>low absorbing (hydrophobic) system</th>
</tr>
</thead>
<tbody>
<tr>
<td>mineralic under coat</td>
<td>organic under coat</td>
</tr>
<tr>
<td>$t = 5, \text{mm}$</td>
<td>$t = 5, \text{mm}$</td>
</tr>
<tr>
<td>$w = 1.55, \text{kg/(m}^2\text{\cdot h)}$</td>
<td>$w \leq 0.03, \text{kg/(m}^2\text{\cdot h)}$</td>
</tr>
<tr>
<td>$\mu = 14$</td>
<td>$\mu = 300$</td>
</tr>
</tbody>
</table>

- **electrical heating system integrated into the reinforcement fabric**
 - Resistance wire ISA-Chrom 60
 - Diameter: 0.8 mm
 - Spacing: 1.5 cm

<table>
<thead>
<tr>
<th>lime cement plaster</th>
<th>silicon plaster</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t = 3, \text{mm}$</td>
<td>Schichtdicke: 3 mm</td>
</tr>
<tr>
<td>$w = 1.55, \text{kg/(m}^2\text{\cdot h)}$</td>
<td>$w \leq 0.06, \text{kg/(m}^2\text{\cdot h)}$</td>
</tr>
<tr>
<td>$\mu = 13$</td>
<td>$\mu = 75$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>silicon paint</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$w \leq 0.1, \text{kg/(m}^2\text{\cdot h)}$</td>
<td></td>
</tr>
<tr>
<td>$\mu = 500$</td>
<td></td>
</tr>
</tbody>
</table>

- Power supply over transformer rectifier
 - Electric potential: 9 Volt
- Resistance of wire: 26 Ω
- Sample area: 0.0625 m²
- Areic heating power
 - $P = U^2 / (R \cdot A)$
 - $\sim 50\, \text{Watt/m}^2$
Research Design - Free weathering test

Heated and reference samples with different sensors

Concepts tested to control the heating:
- Comparison of surface and dewpoint temperature
- Comparison of surface humidity with a predefined critical limit
Research Design - Data evaluation

- absolute heating time \((t_H) \) to prevent undercooling [h]
- heating time to prevent undercooling as a percentage of the period under consideration \((t_{HP}) \) [%]
- heating time
 - reduced to the time span relevant for active growth of algae and
 - reduced to the time span without precipitation [h or %]
- \((C1 + C2 + C3)\)

- **Condition 1**: \(T_S \leq T_T \)
- **Condition 2**: \(\theta_L > 5^\circ C \)
- **Condition 3**: \(m_P = 0 \)

- energy consumption per unit area \(W_A \) [kWh/m²]
Research design - Concept for the gain and storage of regenerative energy

- Integration of a capillary tube mat into the plaster system of the ETICS working as a solar absorber / collector
- Bidirectional use of the capillary mat for the absorption and dissipation of heat
- Heat storage in sensible short term storage tank
- Control of the circulation pump by the comparison of surface (T_S), dewpoint (T_T) and storage tank temperature (T_ST)
 - \(T_S > T_{TS} \rightarrow \) heat extracted from the façade
 - \(T_S < T_{TS} \rightarrow \) heat supplied to the façade
Research design – capillary tube mat heating
Research design - test façade

External insulation composite system applied to a newly erected concrete facade facing north
Heated External Insulation Composite Systems to avoid Biological Defacement

Dipl.-Ing. (FH) Julia v. Werder

Insertion of the resistance wire into the reinforcement fabric
Research design - test façade

Integration of the resistance wire into the organic undercoat
Connection of the resistance wire loops to the power supply
Cutting out of the insulation board for the integration of the collecting pipes

Connection of the flow and the return with the collecting pipes of the mats
Filling of the area cut out for the piping with foam

Application of the organic undercoat and integration of the reinforcement fabric
Results- Resistance wire heating

- system set-up simple and cost efficient
- Prevention of dewpoint deficits over the whole year
- additional costs compared to a standard system about 20 Euro /m²
- spacing of the resistance wire of 2 cm allows uniform heating
- Hydrophobic surface more efficient

- annual heating demand to avoid undercooling (time span relevant for microorganisms without precipitation): 25 kWh/m² → to high!
- Annual electricity costs per m²: 6.25 (0.25 Euro /kWh) exceed costs for maintenance (27 Euro /m², maintenance interval: 10 years)
- System can be only efficient if algal growth can be already prevented by a reduction of undercooling!
Chronological sequence of the differences between the surface and dewpoint temperature of the different sample setups for the time span 01.- 31. August 2009
Heated External Insulation Composite Systems to avoid Biological Defacement
Dipl.-Ing. (FH) Julia v. Werder

thermography 3.12.2009
Results- monthly energy demand of the resistance wire heating

Highest energy demand in summer and fall months
Research results- capillary tube mat

- The integration of a capillary tube mat into an external insulation system is more costly than the integration of a resistance wire
- Additional costs including storage tank are approx. 45 Euro /m²
- The abstraction capacity of the facade absorber measured is approx. 12 W/m²K.
- Because of the low energy input during the fall and winter months undercooling can only be reduced by a percentage of 10-20 %
- The energy costs for the service of the pump are maximum 1kWh/m²
- If a reduction of undercooling is sufficient to prevent algal growth the system could be economical
Measuring data 11.-14.05.2009
Heated External Insulation Composite Systems to avoid Biological Defacement
Dipl.-Ing. (FH) Julia v. Werder