Humidity buffering of building interiors
Humidity buffering of building interiors

Tim Padfield
Lars Aasbjerg Jensen
Already in 1934, engineer MacIntyre published the concept of humidity buffering a museum gallery.
The Suffolk Record Office, Ipswich, UK
The climate is controlled by winter heating alone
The climate within the Suffolk Record Office.
The green trace shows the imbalance in water vapour concentration inside and out.
The record office is full of paper. Can one stabilise the RH in a sparsely furnished space?

(Sharpham House, Devon UK)
The experimental apparatus. Unfired perforated brick is exposed in an airtight chamber to a fluctuating RH
An example of the raw data format: the water exchanged in grams as the RH fluctuates between 50% and 60%
The weight change is converted into the volume of air which will accept the same weight of water as the specimen for the same rise in RH.

This is the **B-value**, expressed as metres above a flat surface of one square metre.
The sum of all B-values, converted to volume, becomes a virtual volume for the room which is used to calculate the effect on the interior climate of all moisture fluxes.
For rooms with absorbent furniture and waistcoats, a ventilation test is followed by...
… a steam test to find the B-value
Buffer capacity in equivalent cubic metres of air per square metre of surface

24 hour cycle
The effect of varying B-value on the projected rate of change of RH in an empty store room lined with perforated unfired brick. Air exchange rate 0.03/hr
Acknowledgements

The National Museum Of Denmark

Department of Civil Engineering Technical University of Denmark

Suffolk Record office

Danish Energy Agency

Lars

Creative Commons Licence: Attribution, non-commercial

www.conservationphysics.org