In-band Full-Duplex Radio Transceivers with Imperfect RF Components: Analysis and Enhanced Cancellation Algorithms

Dani Korpi, Lauri Anttila, and Mikko Valkama

Tampere University of Technology, Department of Electronics and Communications Engineering, Finland

9th International Conference on Cognitive Radio Oriented Wireless Networks, DUPLO Workshop

4.6.2014
Outline

• Introduction
• RF impairments in a typical full-duplex transceiver
• Overall feasibility with linear digital cancellation
• Enhanced digital cancellation algorithm
• Waveform simulations
• Conclusion
Introduction

- Simultaneous transmission and reception at the same center frequency is an appealing scheme
 - Increased data rate, MAC level benefits, etc.
• However, it has also its downsides
 – Increased complexity due to self-interference cancellation, RF impairments, etc.
RF impairments

• The self-interference (SI) signal is distorted in numerous ways within the transceiver chain
 – This affects the accuracy with which the SI signal can be regenerated for cancellation in the digital domain
 – Using only linear processing results in insufficient digital SI cancellation
Full-duplex transceiver model
IQ imbalance

- It has been observed that imbalance between I- and Q-branches is a serious concern in in-band full-duplex transceivers.
- Complex conjugate of the input signal is summed on top of it with certain attenuation:
 \[x_{IQ}(t) = g_1(t) * x(t) + g_2(t) * x^*(t) \]
- Image rejection ratio (IRR) is the power difference between the direct and image component.
Nonlinear distortion

- Amplifiers distort the signal nonlinearly if the input power is too high
 - Due to the high power of the SI signal, even a mild distortion can be significant interference for the weak received signal of interest
- Power of nth order nonlinear distortion can be approximated with the well known equation:
 \[P_{NL,nth} = P_{out} - (n - 1)(IIPn - P_{in}) \]
Quantization noise

- If the power of the SI signal at the input of the ADC is very high, also quantization noise can be a serious issue
 - Only little dynamic range is available for the received signal of interest
- The quantization noise floor can be expressed as $P_q = P_{AD} - SNR_{ADC}$.
Transmitter-induced thermal noise

- Something that has not been studied before
- The active components in the TX chain and RF cancellation path produce additional thermal noise
 - Part of it is cancelled by RF cancellation
- With high levels of analog SI attenuation, TX-induced thermal noise is not an issue
Typical parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNR requirement</td>
<td>10 dB</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>12.5 MHz</td>
</tr>
<tr>
<td>Sensitivity level</td>
<td>-88.9 dBm</td>
</tr>
<tr>
<td>Received signal power</td>
<td>-83.9 dBm</td>
</tr>
<tr>
<td>Antenna separation</td>
<td>40 dB</td>
</tr>
<tr>
<td>RF cancellation</td>
<td>30 dB</td>
</tr>
<tr>
<td>ADC bits</td>
<td>12</td>
</tr>
<tr>
<td>IRR (RX & TX)</td>
<td>30 dB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Component</th>
<th>Gain (dB)</th>
<th>IIP2 (dBm)</th>
<th>IIP3 (dBm)</th>
<th>NF (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA (TX)</td>
<td>27</td>
<td>-</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>VM</td>
<td>-10</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>LNA (RX)</td>
<td>25</td>
<td>43</td>
<td>-9</td>
<td>4.1</td>
</tr>
<tr>
<td>IQ Mixer (RX)</td>
<td>6</td>
<td>42</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>VGA (RX)</td>
<td>0-69</td>
<td>43</td>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>
Overall feasibility with linear digital cancellation

- SI mirror image is dominating
- Also PA-induced nonlinearities are problematic
- TX-induced thermal noise is not an issue in this case
Joint cancellation algorithm

• The previous observations motivate the development of a digital cancellation algorithm capable of modeling both IQ imaging and nonlinear distortion
• The simplest way to do this is just to combine widely-linear and nonlinear cancellation algorithms
Joint cancellation algorithm (cont.)

- Assuming that there is only IQ imaging in the transceiver chain, the SI signal in the digital domain is of the form

\[y_{ADC,IQ} = Xh_1 + X^*h_2 = [X \quad X^*] \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} = X_{aug}h_{aug} \]

where \(X \) is a convolution data matrix constructed from the original transmit signal \(x(n) \), \(X^* \) is its element wise complex conjugate and \(\mathbf{h}_{aug} \) is the total channel response.
Joint cancellation algorithm (cont.)

• Assuming only a nonlinear PA, the observed SI signal is of the following form:

\[y_{ADC,NL} = \Psi f_{eff} \]

where \(\Psi \) is a convolution data matrix constructed from basis functions \(\psi_p(x(n)) = |x(n)|^{p-1}x(n) \) and \(f_{eff} \) consists of the corresponding responses of the different basis functions.
Joint cancellation algorithm (cont.)

- A simple way to approximate the combined effect of IQ imbalance and nonlinear PA is to write the observed signal as

\[y_{ADC} = X_{aug} h_{aug} + \tilde{\Psi} f_{eff} + z = [X_{aug} \quad \tilde{\Psi}] h_{tot} + z = \Psi_{aug} h_{tot} + z \]

where the accent \(\sim \) denotes the removal of the linear SI term and \(z \) is the additional noise.

- Thus, by excluding the cross terms arising from the cascade of the PA and IQ mixers, a simple SI signal model can be derived.
Joint cancellation algorithm (cont.)

- The total effective channel response can be estimated easily based on the signal model.
- For instance, an estimate for the response can be calculated with least squares as:
 \[
 \hat{h}_{tot} = \left(\Psi_{aug}^H \Psi_{aug} \right)^{-1} \Psi_{aug}^H y_{ADC}
 \]
- The channel estimate can then be used to cancel the SI signal:
 \[
 y_{canc} = y_{ADC} - \Psi_{aug} \hat{h}_{tot}
 \]
Waveform simulations

- Same transceiver model as before, with the same parameters
- OFDM signal
- All the nonidealities are modelled in the simulations, including RX nonlinearities and quantization noise
Waveform simulations (cont.)

- A significant performance gain is attained even with this type of a simple joint cancellation scheme.
- RX nonlinearities and the cross terms decrease the SINR with high transmit powers.

![Graph showing SINR vs. Transmit Power](Image)
Conclusion

• There are several sources of nonidealities, which make in-band full-duplex communications a challenging concept.

• Typically, IQ imbalance and PA-induced nonlinear distortion are the most harmful impairments.

• It was shown that even a simple joint cancellation scheme can help in preventing the SINR decrease caused by these nonidealities.
Thank you!

• Questions or comments?

Supporting references

